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Introduction  

The original goal of this project was to combine two methods developed to increase the sensitivity of breast 

cancer imaging - digital breast tomosynthesis (DBT) and temporal subtraction.  The purpose of the project was 

to determine the feasibility of subtracting temporally spaced DBT images to highlight potentially significant 

changes in breast morphology between acquisitions. The combined technique would allow for easier and earlier 

detection of breast cancer than with either technique alone.  Although the original scope of the project outlined 

using computer simulations and physical phantoms to evaluate the feasibility of the method, an IRB approved 

initial investigation was performed using temporally acquired DBT images of human subjects.  Simulated subtle 

masses were used to provide the known temporal changes and ROI alignment was performed after 

volumetrically warping one of the datasets using corresponding location markers such as calcifications, vessel 

bifurcations, and breast edges.  The results showed that structural discrepancies, due to differences in 

positioning and compression between temporally spaced acquisitions, caused slight anatomical variations 

between reconstructed slices that significantly reduced registration accuracy and subtraction.  The misalignment 

of the datasets increased the contrast in the subtraction image and did not increase lesion conspicuity. 

Although, the feasibility of combining the two methods using simulation and physical phantoms may have 

shown to be promising, qualitative analysis of the results using actual human subject data did not indicate a 

significant improvement in breast cancer detection.  

These results prompted the change in scope of the project to focus on developing a realistic computerized 

breast phantom (RCBP) to be used for breast imaging research. The RCBP can be used for simulations that study 

the imaging system design, acquisition protocols, reconstruction algorithms, and image processing techniques. 

The RCBP is an inexpensive option compared to physical phantoms and can be modified in terms of size and 

tissue distribution to provide a “known truth” for a variety of breasts.  One goal of RCBP development is to use 

dedicated breast CT data as the foundation for the phantom and have the ability to create different realizations 

of breast morphology based on actual patient data.  The phantom developed in this project will provide a vital 

tool to investigate current and emerging breast imaging methods and techniques with the ability to simulate 

realistic, predictive patient imaging data. 

Body 

Task 1. To generate tomosynthesis datasets of simulated and physical breast phantom. 

1a. Develop a realistic computer simulated breast phantom simulation and generate up to 50 simulated 

tomosynthesis projection data with the phantom undergoing simulated tissue deformation: In progress 

As reported in the last summary, this task became the focus of the project.  The computerized breast phantom 

developed in this work will improve on existing, simpler phantoms by being both anatomically realistic and 

detailed. In addition, it will provide an optimization tool for breast imaging research by accounting for the effect 

of anatomy and its variations in a population.  Since the last summary, several improvements have been made 

to the RCBP
1
. 

In addition to denoising the dedicated breast CT dataset with an algorithm developed in our lab, a post-

reconstruction scatter correction algorithm was used to correct for background non-uniformity in each axial 

image
2
. The cupping artifact was modeled as a circularly symmetric additive background signal profile in the 
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reconstructed image set.  The scatter artifact lowers the true tissue signal in a non-uniform way with a greater 

bias towards the breast center.  The correction signal is based on a sampling technique to obtain an estimate of 

the adipose tissue signal in the axial images. The simulated cupping artifact (Figure 1) was subtracted from the 

breast volume in order to correct for scatter.   

Additional segmentation methods were implemented to further improve the high resolution detail available in 

the phantom. Breast volume masking was followed by an iterative histogram classification to provide initial 

tissue segmentation.  Next, morphological techniques were used to include joining elements that did not appear 

in the initial segmentation.  Finally, the fibroglandular tissue was segmented to include the innate marbling 

effect of fibroglandular and adipose tissue.  These methods are more completely described in Appendix 2. The 

resulting segmentation (Figure 2) more closely resembles the original breast data than previous segmentation 

results.  

The next step in the process was to create the computerized compressible breast model from the segmented 

data (Figure 3). Currently, a simplistic compression model is used, which does not take into consideration the 

varying mechanical properties of the different breast tissue. A finite element model (FEM) of the breast is 

necessary to create a realistic compression model of the breast.  In order to use finite element methods, a 

volumetric mesh needs to be generated.  The first step to create the FEM of the breast was creating a mesh 

surface model using the Matlab isosurface function, which renders a polygon surface mesh in volumetric data. 

The surface model includes all of the intricate tissue connections within the breast; however, it lacks the 

volumetric information necessary for an FEM of the breast.  In order to accomplish creating the FEM, a pre-

processing tool is used to generate the volumetric mesh from the surface mesh.   

The high resolution of the breast data creates a very complex nodal structure.  Typically, pre-processing tools 

can handle on the order of 5 thousand nodes; unfortunately the breast model has over 5 million nodes (Figure 

4).  This complicated the meshing considerably, and in order to work, the model has to be down-sampled, which 

reduces the complexity of the resulting compressed model.  Currently the full resolution volumetrically meshed 

breast has yet to be generated, although a lower resolution volumetric mesh is possible.  Although this detracts 

from the high-resolution of the current model, this will demonstrate the method that can generate a high 

resolution, compressible breast model when future iterations of pre-processing software are able to handle 

more complex data. 

Issues and future work: Ultimately the goal of this RCBP effort is to create a database of anatomically realistic 

computerized breasts that are based on real data and used in breast imaging research. The computational 

anatomy algorithm that will be used to morph between breast data in order to generate any configuration of 

breast tissue density and morphology still needs to be created and will be completed during the course of the 

investigators dissertation. The current compression model is too simplistic and an FEM compression model of 

the breast still needs to be created as this is a necessary piece of the model for imaging research in methods 

that use compression. In order to create the FEM model, the volumetric mesh step requires a down sampling of 

the data’s resolution.  Although, resulting in a coarser resolution, these methods demonstrate how a high-

resolution RCBP may be generated in the future when pre-processing software can process this complicated 

structure. 
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Figure 1: Scatter correction matrix subtracted from each axial slice to correct for background non-uniformity. 

 

Figure 2: (A) original CT data. (B) Segmented CT data. 

Figure 3: Surface model of the breast skin and fibroglandular tissue. 

Figure 4: Screen shot of breast surface mesh in pre-processing software. 
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Simulated mammogram acquisition can be performed directly on the mesh surface model.   An example of how 

the breast phantom can be changed to generate different breast morphology is demonstrated in Figure 5. This 

shows two representations of the same breast taken with slightly different attenuation coefficient values used 

to define the fibroglandular tissue. Tomosynthesis data can also be acquired of the breast phantom, as 

previously reported. 

 

Task2. To develop a registration and subtraction algorithm: Complete 

1b. Acquire up to 30 tomosynthesis projections of a compressible and deformable physical phantom with 

physically simulated anatomy and under different simulated temporal discrepancies: Complete 

Previously, the investigator showed that it was feasible to acquire tomosynthesis projections of a compressible 

and deformable physical phantom.  Inside of the breast phantom the investigator inserted a number of objects 

to simulate breast parenchyma. The investigator took multiple tomosynthesis exams of a compressed breast 

rotated in-between image acquisitions.  There were three scans taken in total: one in the original orientation 

and original number of simulated lesions;   the second with the breast slightly rotated with the original number 

of simulated lesions; and the third with the breast rotated in a different way and without some of the simulated 

lesions. Unfortunately, the materials used for the physical phantom were not ideal and the tomosynthesis 

images reconstructed from the acquisition do not look realistic enough to use for the observer study.  After 

investigation using human subject data showed that temporal subtraction of DBT images did not greatly improve 

the detectability of malignant morphology, effort towards this task was ended to focus on task 1a. 

1c. Utilize up to 3 different tomosynthesis reconstruction algorithms (Filtered Back Projection, Matrix 

Inversion Tomosynthesis, and Gaussian Frequency Blending) to create tomosynthesis data sets of the 

simulated and physical phantom: Complete 

As reported previously the DBT images were reconstructed using the Filtered Back Projection algorithm.  

However, the images did not appear to realistically resemble actual breast tomosynthesis images from human 

subjects. Work on this task was halted when the temporal subtraction of human subject DBT images did not 

improve lesion conspicuity and the focus of the project was put towards Task 1a.   

Figure 5: Simulated mammograms of the same breast phantom to demonstrate user defined changes in breast morphology. 
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Task2. To develop a registration and subtraction algorithm: Complete 

As reported in the last summary, the investigator received IRB approval to use temporally acquired breast 

tomosynthesis datasets of two human patients. An algorithm was developed to register and subtract two 

clinical breast tomosynthesis datasets of the same patient that were acquired under IRB protocol with 

nine months temporal spacing. Calcification points common in the two image sets were used to 

manually determine 3D angular rotations and translations of the breast that occurred between 

acquisitions.  One image set was rigidly transformed to better align the two image sets. A registration 

method developed by Althof et al. was implemented to align and subtract ROIs in the two image sets 

using cross correlation
3
.   One image’s ROIs could be matched with any ROI in the other image set 

within a certain volume of data.  This was done in an attempt to limit the area of registration to a 

region that was most likely to contain the corresponding match. Angular rotations of the ROI ±15
o
 were 

also explored in order to match the ROIs more effectively. In addition, a subtle round mass was 

simulated in the images to highlight both known and significant temporal change between acquisitions. 

To minimize potential mis-registration, the algorithm was run twice to find the best ROI to subtract and 

then again, to subtract the ROI with the simulated lesion from its best matched ROI.  Refinement of the 

algorithm was not pursued after the simple subtraction did not yield improvements in lesion detection. 

Task3. To evaluate the temporal subtraction method on the images: Complete 

As previously reported, although constraints were implemented to disregard registering to image 

noise, there were too many inter-image variations to adequately align the breast ROIs properly.  If the 

overarching image gradients matched, there were still shading differences that appeared to increase 

the subtracted image contrast rather than decreasing it as expected.  In addition, there were many 

ROIs that did not adequately match up with a corresponding ROI. An overwhelming number of ROIs 

adequately registered, however they were incorrect matchings in inappropriate locations and reflected 

a failure of the matching algorithm. These ROIs further increased image contrast because of incorrect 

registration issues. Some ROIs appeared to have subtracted similar breast texture; however these were 

still not perfectly aligned and created increased contrast in the subtraction. The addition of a simulated 

subtle mass was not visible in the resulting subtraction. This method did not show any increase in 

lesion conspicuity, most likely due to the overwhelming amount of mis-registered ROIs and severely 

dissimilar registered ROIs. The major complication for the registration algorithm was most likely due to 

differences in positioning and compression forces used during the temporally spaced acquisitions.  This 

caused structural discrepancies that created slight anatomical variations between reconstructed slices 

to significantly reduce registration ability and subtraction. The non-isotropic resolution of the imaging 

data did not allow for in-between plane information to be factored into the mechanical transformation 

algorithm.  This contributed to mis-registration issues since information between planes, did not get 

transferred onto a plane, and was not available for registration. These results prompted the 

investigator to focus solely on creating a realistic computerized breast phantom. 
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Task 4. To concurrently complete other aspects of training program: In progress 

The investigator has attended several conferences over the course of the award period, including: SPIE medical 

imaging conference, DOD BCRP Era of Hope Award, and BRIC GE symposium on Breast Imaging.  The investigator 

has published several first author papers, including one peer-reviewed article in Medical Physics. In addition, the 

investigator has been a co-author on several papers during the course of the DOD award. 

Key Research Accomplishments 

• Dedicated breast CT data of human subjects was processed for basis of realistic computerized breast 

phantom 

• Scatter correction algorithm was implemented to correct for background non-uniformity 

• A refined automated segmentation algorithm was developed 

• A mesh-surface model of a single breast was created with all tissues 

• Pre-processing software to complete volumetric mesh was chosen (Altair Hyperworks) 

• Simulated mammographic and tomosynthesis data was acquired 

• Compression algorithm should be made more realistic using finite-element methods 

• An algorithm for the temporal subtraction for digital breast tomosynthesis human datasets was 

developed and implemented 

• Results from human data shows that temporal subtraction of digital breast tomosynthesis data may be 

infeasible.  

 

Reportable Outcomes 

1. C. M. Li and J. T. Dobbins, III, “Methodology for Determining Dose Reduction for Chest Tomosynthesis,” 

SPIE Medical Imaging 2007: Physics of Medical Imaging 6510, (2007). 

2. C. M. Li, W. P. Segars, J. Y. Lo, et al., "Three-dimensional computer generated breast phantom based on 

empirical data," Medical Imaging 2008: Physics of Medical Imaging 6913, 691314 (2008).  

3. Oral presentation SPIE Medical Imaging 2008. 

4. McAdams H.P., Dobbins J.T., III, Li C.M.,”Digital Tomosynthesis of the Chest for Lung Nodule Detection: 

Initial Clinical Experience,” RSNA 93rd Scientific Program (2007).  

5. Dobbins J.T., III, McAdams H.P., Godfrey D.J., Li C.M.,  “Digital Tomosynthesis of the Chest,”  

Journal of Thoracic Imaging 23, 86-92, (2008). 

6. Dobbins, J. T., III, McAdams, Song J., Li C.M., Godfrey D.J., DeLong D.M., Paik S., Martinez- 

Jimenez, S., "Digital tomosynthesis of the chest for lung nodule detection: Interim sensitivity results 

from an ongoing NIH-sponsored trial," Medical Physics 35, 2554-2557, (2008). 

7. Preliminary exam completed. 

8. C. M. Li, W. P. Segars, G. D. Tourassi, J. M. Boone, J. T. Dobbins, III, "Methodology for generating a 3D 

computerized breast phantom from empirical data," Medical Physics 36, 3122-3131 (2009). 

9. C. M. Li, W. P. Segars, J. Y. Lo, A. I. Veress, J. M. Boone and J. T. D. III, “Computerized 3D breast phantom 

with enhanced high-resolution detail,” Medical Imaging 2009: Physics of Medical Imaging, Orlando, FL, 

(2009). 

10. Oral presentation SPIE Medical Imaging 2009. 

11. 2
nd

 author for an abstract accepted for SPIE Medical Imaging 2010. “In vivo characterization of breast 

tissues through absolute attenuation coefficients using dedicated cone-beam CT.” 

12. NIH NCI grant 1R01CA134658 "3D Digital Breast Phantoms For Multimodality Research" was funded 

based on the RCBP developed during this project. 
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 Conclusions 

An algorithm to implement the original goal for the project, developing a temporal subtraction algorithm for 

tomosynthesis data, was attempted on actual human data. The initial results from this effort showed that the 

combination of the two methods did not increase lesion detectability and resulted in many subtraction artifacts.  

The artifacts are believed to be primarily due to differences in patient positioning, compression amounts, and 

hormonal fluctuations in breast composition.  In the future, investigation into the temporal subtraction 

technique may be warranted with fully 3D imaging data as the non-isotropic resolution of the data did not allow 

for in-between plane information to be factored into image registration.  The investigator decided to change the 

focus of the project toward developing a computerized breast phantom.  

This project will present researches with a realistic breast phantom that is based on actual human data and 

offers a number of unique properties not currently available in other phantoms.  This will provide a realistic 

breast phantom that includes the ability to simulate of a variety of sizes, compositions, and deformations.  The 

investigator has already received several requests to use the phantom for research, although none have been 

granted as the phantom is not yet ready for public release.  This project has the potential to contribute 

significantly to breast imaging research for the advancements of detection techniques and technologies.   
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ABSTRACT 

We previously proposed a three-dimensional computerized breast phantom that combines empirical data with 
the flexibility of mathematical models1.  The goal of this project is to enhance the breast phantom to include a 
more detailed anatomy than currently visible and create additional phantoms from different breast CT data. 
To improve the level of detail in our existing segmentations, the breast CT data is reconstructed at a higher 
resolution and additional image processing techniques are used to correct for noise and scatter in the image 
data.   A refined segmentation algorithm is used that incorporates more detail than previously defined. To 
further enhance high-resolution detail, mathematical models, implementing branching algorithms to extend 
the glandular tissue throughout the breast and to define Cooper’s ligaments, are under investigation. We 
perform the simulation of mammography and tomosynthesis using an analytical projection algorithm that can 
be applied directly to the mathematical model of the breast without voxelization2.  This method speeds up 
image acquisition, reduces voxelization artifacts, and produces higher resolution images than the previously 
used method. The realistic 3D computerized breast phantom will ultimately be incorporated into the 4D-
XCAT phantom3-5 to be used for breast imaging research.   

Keywords: Imaging of the breast (MG), Phantoms (PHT), Simulation (SIM) 

Introduction 
Breast imaging has been instrumental in reducing the mortality of breast cancer by allowing for earlier 
detection and better quantification of the disease6.  Further improvements to breast imaging techniques and 
systems allow for improved patient care and outcomes. Computer phantoms are increasingly used in medical 
imaging research and development because they can be modified in terms of size and tissue distribution, 
provide a “known truth” to aid in evaluating imaging devices and techniques, and do not require any 
additional material costs or production time other than software processing. Several computerized breast 
phantoms were created for breast imaging using two distinct methods7-15: mathematically based models 
defined by geometric primitives and voxelized models derived from real human-subject data. The major 
limitation of mathematically based models is that they lack realism due to their simplistic shape definitions 
for breast tissue.  Although more realistic, voxelized models are limited by both their anatomically fixed 
nature and the limited number of available breast definitions. The computerized three-dimensional (3D) breast 
phantoms discussed in this work are unique because they are created from the combination of mathematical 
models and empirical data, which results in realistic and flexible phantoms that can be modified in terms of 
size and tissue distribution.  This project is to enhance the current breast phantom to include high-resolution 
detail that is not currently available in the previous version. Information from these computerized breast 
phantoms will ultimately be incorporated into the widely-distributed four-dimensional (4D) extended non-
uniform rational b-splines (NURBS) based Cardiac-Torso (XCAT) phantom developed by Segars et al. to be 
used for breast imaging research2-5. 
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Methods 
 
Image Processing 

Each breast phantom is based on data collected with a prototype dedicated breast CT scanner at UC 
Davis16-19.  During acquisition, each breast is scanned separately and the mean glandular radiation dose 
delivered to the breast was constrained to be the same as two-view mammography. The low-dose acquisition 
of the breast data as well as the cone-beam geometry of the CT system resulted in image degradation due to 
scatter radiation and quantum noise. Correction of scatter and noise is a necessary part of this project because 
the non-uniformity of the background may cause the glandular tissue values to be lower than the adipose 
tissue values and vice versa.  This becomes a problem when we need to segment the breast CT data by using 
value based techniques in order to create the breast model.  Without adequate scatter and noise correction, the 
segmentation algorithm will not accurately distinguish between different types of tissue.  

 
A denoising algorithm was developed by Xia et al.  in order to perform noise correction on breast CT 

projection mages prior to reconstruction and without loss of spatial resolution20.  The CT projection images 
were processed with 40 iterations of the denoising algorithm and were reconstructed using a custom written 
filtered back-projection algorithm.  The resulting dataset had axial slices with an in-plane resolution of 250 
μm and slice spacing of 500 μm.  An algorithm similar to the post-reconstruction scatter correction method 
developed by Altunbas et al. was used to correct for the background non-uniformity in each axial image due 
to scatter 21. 

 

Segmentation 
After noise and scatter correction, the next step is the classification of the CT data into the various breast 

tissues, which will define the appropriate physical characteristics of each voxel during simulated compression 
and image acquisition. An automated segmentation algorithm was developed to segment the skin, glandular, 
and adipose tissues.  Several steps were used to segment the breast data.  We used a histogram technique to 
provide the general basis for segmentation of the glandular tissue.  This technique was similar to the 
technique used by Packard and Boone22 and was used to define a threshold for each slice.   

 
Morphologically based steps were used to further refine the segmentation as well as regain glandular tissue 

that was not classified with the histogram segmentation.  Slices were examined for ellipsoid shaped fragments 
of glandular tissue and a search area around the glandular island was examined for potentially disjoined 
segments. The joining section between the two glandular segments, previously unidentified as glandular 
tissue, was labeled as glandular with this ellipsoidal connection method. In addition, a method was developed 
to search for patterns of distances between large glandular fragments and join the two fragments together if 
they were located close enough. 

 
After the glandular tissue had been segmented, a further classification of the glandular tissue was 

performed based on density.  Marbling of breast tissue results in different ratios of fat interspersed with 
glandular tissue and vice versa, therefore the  segmented glandular tissue was divided into three different 
levels of density.  This served to give the glandular tissue a more realistic representation of the breast than a 
single density level. 

 

Model Creation 
Computer graphics techniques were used to generate a 3D mesh surface model of the breast from the 

segmented data.  In the mesh model, triangles were used to estimate the curved surfaces of the tissue. Once 
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the mesh model was created, additional operations may be performed to manipulate or deform the mesh. The 
resulting polygon mesh of each tissue was input to the Rhinoceros NURBS modeling software23 and a surface 
was fit to it in order to display the breast model.  

 

Compression of the Breast Phantom 
The breast is compressed during mammography and this is essential to produce high quality images.  It is 

necessary to create a compression model component in order to make the breast phantom applicable for 
research in breast imaging. For this preliminary work we used a simplistic compression model that did not 
account for the mechanical properties of different tissues presented previously1. The breast was assumed to be 
incompressible and isotropic and the model simulated compression between stiff plates. 

 

Simulated Mammogram Acquisition 
The objective of all imaging phantoms is to generate realistic images that accurately model the imaging 

process. Therefore, simulated image acquisition is a necessary component to evaluate the phantom’s clinical 
utility. Previously, voxelized data was interpolated from the mesh breast model and then used for simulated 
acquisition. This process was computationally intensive and required a reduction in the models complexity, 
which resulted in voxelization errors and decreased resolution in the simulated images.  In this work, the 
images were generated with an analytical projection algorithm that models the x-ray imaging process and 
includes effects from quantum noise4. The program has the ability to simulate parallel, fan, or cone-beam 
geometries directly from the compressed mesh surface definition using a given polychromatic x-ray 
spectrum24. We simulated mammograms with geometry similar to the Siemens Mammomat Novation 
SystemTOMO (SID – 653.2 cm and air gap –15 mm) at 30 kVp. Material characteristics of the breast phantom 
were defined using a report from the International Commission on Radiation Units.  The different density 
levels of glandular tissue were assigned attenuation coefficients equally distributed between fat and muscle,  
skin tissue was assigned the same attenuation coefficient as muscle, and adipose was assigned fat25. 
 
 MultiModality Applications 

The phantom has applications beyond simulated mammograms and can be used by many other modalities 
as well. To demonstrate the phantom’s abilities, tomosynthesis, MRI, and ultrasound images were simulated 
of the breast phantom. The tomosynthesis projection images were simulated in a similar method to the 
mammogram images using the Siemens Mammomat Novation System.  Twenty-five projection images were 
acquired over a 50o arc and reconstructed using Siemens’ proprietary reconstruction algorithm26, 27.  MRI data 
was simulated from the phantom using ODIN28.  The T1, T2, and spin density properties of the breast 
structures were derived based on experimental studies29. Ultrasound data was simulated using Field II30 
setting the acoustical properties of the tissues according to Madsen, et al31.  
  
 
Results 
  
Segmentation 

The increased number of denoising iterations and addition of scatter correction contributed to an   
improved segmentation of the reconstructed datasets in the central breast area over the previous segmentation. 
In addition the additional segmentation steps increased the high-resolution detail of the phantom.  The density 
differentiation of the segmented glandular tissue also served to more realistically represent the marbling effect 
of adipose and glandular tissue in the breast (Figure 1).   
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Figure 2: Surface rendering of the skin is shown on the left and an illustration of the inner structures is 
on the right. 

Original Previous Segmentation New Segmentation 

Figure 1: a) Original data prior to image processing. b) Previous segmentation. c) New segmentation with 
improved segmentation additional image processing. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Model 
 
A new model was generated from the segmented data and is shown in Figure 2.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
Simulation of a Projection Mammogram  

 
The previous simulated image acquisition method to generate a simulated projection mammogram 

required time consuming and computationally intensive voxelization of the phantom and resulted in a reduced 
resolution from 400 μm to 800 μm in the final image. The new analytical projection algorithm used in this 
work required seconds to run and resulted in 250 μm resolution in the final image.  The image was processed 
with a sigmoidal function in order to display the image optimally (Figure 3a). 
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SimulatedReal

 

 

Figure 3: a) Simulated mammogram of a compressed breast phantom with improved high resolution 
detail using analytical projection algorithm. b) Simulated Tomosynthesis slice of the phantom  

(A) (B)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Multimodality Applications 

 
A tomosynthesis reconstructed image is shown in Figure 3b.  Figure 4 displays a comparison of real breast 

MRI data on the left and simulated breast MRI of the phantom on the right.  The images were not acquired of 
the same human subject. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5 displays a comparison of real breast ultrasound data on the left and simulated ultrasound of the 
phantom on the right. The human subject data was not aquired  
 
 
 
 
 
 

Figure 4: MRI of a real breast compared to a simulated MRI of the phantom. 
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Future Work 
 
Modeling of additional structures 

In theory, the segmentation should be able to produce a model at approximately the same resolution as the 
CT data upon which it is based.  If the segmentation does not result in a phantom with acceptable resolution, 
we will investigate combining our segmentation with mathematical formulations. Mathematical branching 
algorithms are under investigation to extend the breast ductal network and enhance and replace the missing 
high resolution detail for more realistic and complete breast tissue modeling. We previously developed such 
methods to define complete models for the airway tree in the lungs and the coronary arteries of the heart32, 33. 
These branching methods used segmented data for the initial basis of the airway and coronary trees and then 
used a physiologically-based mathematical algorithm to further propagate the trees to complete them.  We 
also plan to add further detail by defining the Cooper’s ligaments using geometrical NURBS surfaces.  

 
Realistic Compression using Finite Element Methods 

The current simplistic compression method used currently does not realistically simulate breast 
compression. The interaction between adjoining tissues and their different mechanical characteristics were not 
taken into account and this affects the tissue distribution in the resulting images. Finite-element methods that 
take into account different material properties of the breast tissue will be used to realistically model breast 
compression.   A finite element mesh will be based on the segmented breast data, which will also be used to 
define the mechanical properties for a realistic breast compression model. Boundary conditions will be 
defined and breast compression will be simulated between flat plates as demonstrated in Figure 6. 

 
 
 
 
 
 
 
 
 
 

Figure 5: Ultrasound of a real breast compared to a simulated Ultrasound of 
the phantom. 
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Conclusions 

 
This work will further enhance the breast phantom to include finer detailed structures that are not currently 

visible and generate additional phantoms from different breast CT data. These computerized breast phantoms 
will ultimately be incorporated into the 4D-XCAT phantom in order to make it applicable to breast imaging 
research. 
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The initial process for creating a flexible three-dimensional computer-generated breast phantom
based on empirical data is described. Dedicated breast computed-tomography data were processed
to suppress noise and scatter artifacts in the reconstructed image set. An automated algorithm was
developed to classify the breast into its primary components. A preliminary phantom defined using
subdivision surfaces was generated from the segmented data. To demonstrate potential applications
of the phantom, simulated mammographic image data were acquired of the phantom using a
simplistic compression model and an analytic projection algorithm directly on the surface model.
The simulated image was generated using a model for a polyenergetic cone-beam projection of the
compressed phantom. The methods used to create the breast phantom generate resulting images that
have a high level of tissue structure detail available and appear similar to actual mammograms.
Fractal dimension measurements of simulated images of the phantom are comparatively similar to
measurements from images of real human subjects. A realistic and geometrically defined breast
phantom that can accurately simulate imaging data may have many applications in breast imaging
research. © 2009 American Association of Physicists in Medicine. �DOI: 10.1118/1.3140588�

Key words: breast imaging, mammography, phantom, segmentation, modeling
I. INTRODUCTION

Early detection of breast cancer has been instrumental in
reducing the mortality of the disease.1 Many new and im-
proved imaging systems and techniques are currently under
development for the detection and diagnosis of breast cancer.
It is essential for the advancement of breast imaging systems
to have a tool that can be used to optimize and evaluate new
techniques and to compare methods across different
modalities.

Phantoms are often employed to optimize imaging param-
eters and improve image quality by providing a “known
truth” to evaluate new reconstruction algorithms and aid in
the development of novel imaging techniques. Physical
phantoms used in breast imaging are currently limited in that
they cannot adequately represent the variety of breast sizes,
shapes, compositions, and parenchymal detail. It would be

difficult to generate patient-specific physical phantoms due

3122 Med. Phys. 36 „7…, July 2009 0094-2405/2009/36„7…/3
to the time consuming production process and the expense of
the materials that compose the phantoms. Computerized
phantoms, on the other hand, are advantageous in that they
can be modified in terms of size and tissue distribution to
generate any number of anatomical variations present in a
patient population. The anatomy and physiology are user de-
fined so they provide a known truth from which to evaluate
imaging devices and techniques without additional material
costs and production time other than software processing.

There have been several computerized three-dimensional
�3D� breast phantoms created; all were based either on vox-
elization of real subject data or mathematical models based
on geometric primitives.2–10 These computerized breast im-
aging phantoms have used different approaches, each with its
own limitations. Mathematical breast phantoms are flexible
and can model varying compositions of breasts, but they are
too simplistic in their representation of breast tissue, and the

resultant images are qualitatively unrealistic. Voxelized
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breast phantoms offer a more realistic approach since they
are based on actual imaging data; however, they are modeled
after a single breast and do not offer the flexibility needed to
represent the variability present in the patient population. In
addition, several of the recently introduced voxelized phan-
toms are based on high-dose breast computed tomography
�CT� of mastectomy specimens. These specimens do not ad-
equately represent intact breasts, since they were placed in
holders and contain air pockets. There is clearly a need for a
realistic and flexible computerized breast phantom.

There are many potential applications in breast imaging
research for a phantom with these attributes. Many emerging
modalities such as tomosynthesis, dual-energy mammogra-
phy, elastography, CT, ultrasound, and dynamic contrast-
enhanced breast MRI would benefit from having an accurate
and validated model of the breast to allow imaging proce-
dures to be optimized under clinically relevant conditions.
The effects of acquisition parameters �e.g., number and an-
gular spacing of projections in tomosynthesis�, physical pro-
cesses �e.g., scatter, beam hardening, and heel effect�, and
sources of variability �e.g., patient anatomy, dose, and posi-
tioning� can all be evaluated and studied in tandem or inde-
pendently using patient-quality simulated data. A realistic
computerized phantom would also provide the necessary
framework with which to quantitatively compare the effec-
tiveness of different imaging methods in tasks that model
clinical practice such as lesion detection. Collaborating or
multidisciplinary groups can share the same virtual phantom
without having to transport a physical phantom around and
impartial comparison can be performed using the same phan-
tom to evaluate claims from competing groups for publica-
tion or regulatory approval.

Recent work in phantom development has focused on the
creation of more realistic, mathematically based models us-
ing techniques from computer graphics. One such phantom is
the four-dimensional �4D� extended cardiac-torso �XCAT�
phantom �Fig. 1�11 that was developed by Segars et al. to
provide a realistic, flexible, anatomical, and physiological
model of the human body for use in imaging research.12–14

Based on patient data and using nonuniform rational b-spline
�NURBS� surfaces to define the anatomy, the XCAT phan-

FIG. 1. Surface renderings of the 4D XCAT male �left� and female �right�
anatomy.
tom combines a voxelized approach with a mathematical one
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to offer a phantom with realistic and detailed organs that
remain flexible to allow for anatomical variation and organ
deformation. The XCAT phantom includes detailed whole
body models for the male and female anatomy based on the
visible human data from the National Library of Medicine.

When combined with accurate models of the imaging pro-
cess �e.g., SPECT, PET, MRI, ultrasound, and CT� the 4D
XCAT is capable of simulating realistic imaging data close to
those of actual patients. The XCAT phantom has gained
widespread use in medical imaging research for evaluating
and improving instrumentation, data acquisition, and image
processing and reconstruction methods.

Despite this success, the XCAT is limited in its applica-
tions to breast imaging research. The female anatomy of the
XCAT phantom only uses a simple outer surface to model
the breast and does not include any detailed structures. In
addition, the phantom was created using data from a single
patient and does not simulate breast variations among differ-
ent women.

The goal of the work described in this paper was to create
a detailed 3D computer-generated breast phantom based on
empirical data obtained from breast CT of human subjects.
The breast phantom will be incorporated into the 4D XCAT
phantom in order to make it applicable to breast imaging
research. To the best of our knowledge, this will be the first
breast phantom based on real human data with the ability to
simulate a variety of sizes, compositions, and deformations.
The work presented here describes the methods we used to
create an initial phantom based on high-resolution breast CT
data of a single human subject and demonstrates the phan-
tom’s ability to simulate multimodality imaging data.

II. METHODS

II.A. Overview

Developing a realistic and useful breast phantom requires
many different steps: One must �1� acquire volumetric imag-
ing data, �2� classify the different components of breast tis-
sue as adipose, fibroglandular, or skin, �3� create a flexible
model of the breast from the segmented data, and �4� develop
realistic methods to simulate compression. Once the phan-
tom is developed, it may be compressed or left uncom-
pressed depending on the modality �x-ray, MR, ultrasound,
SPECT, PET� and computer-based simulation methods can
be applied to it to generate realistic imaging data.

Any imaging data may be used as the basis for the phan-
tom. For our particular application, we chose dedicated
breast CT data due to their high-resolution detail. Depending
on the data selected for the phantom, different image pro-
cessing techniques need to be applied to it so as to facilitate
segmentation of the data. Once a data set is segmented, flex-
ible surface models can be created for each breast tissue. We
define each structure in the breast using subdivision
surfaces.15 Unlike the NURBS surfaces that define the XCAT
phantom, subdivision surfaces have the ability to model
complicated branching structures �e.g., the fibroglandular tis-
sue� with a single surface. NURBS surfaces would require

defining a surface for each branch, meaning the structure
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would be composed of many tiny NURBS surfaces. Subdi-
vision surfaces are, therefore, much better for modeling the
complicated structures of the breast. A detailed description of
the steps used experimentally to create our phantom is given
below.

II.B. Breast CT data acquisition and image
processing

As mentioned above, the breast phantom designed in this
work is based on CT data which provide a high-resolution
detailed anatomy in its natural form. Dedicated breast CT is
currently an investigational tool that may eventually have
applications in breast cancer screening or diagnostic evalua-
tion. Dedicated breast CT system images reduce anatomical
noise from overlapping structures and provide a clear depic-
tion of 3D anatomical detail that will be useful for phantom
creation.

There are several groups currently researching dedicated
breast CT at the University of California at Davis,16–22 Duke
University,23–31 University of Rochester,32–36 University of
Massachusetts Medical School,37–39 and University of Texas
M.D. Anderson Cancer Center.40,41 CT image data used in
this study were obtained from investigators at the University
of California at Davis as part of an IRB approved study using
a prototype dedicated breast CT scanner.

The patient lies in the prone position on a scanning table
with the pendant breast hanging through an opening in the
table without compression. The gantry rotates over 360° in
the horizontal plane around the breast and acquires 500 cone-
beam projection images in 16.6 s. Each breast is scanned
separately and the mean fibroglandular radiation dose deliv-
ered to the breast was constrained to be the same as two-
view mammography.16–22

The low-dose acquisition of the breast data as well as the
cone-beam geometry of the CT system results in image deg-
radation due to scatter radiation and considerable quantum
noise. Therefore correction of scatter and noise is a necessary
part of this project because the nonuniformity of the back-
ground may cause the denser tissue �fibroglandular tissue�
values to be lower than the less-dense �adipose tissue� values
and vice versa. This presents a problem when the segmenta-
tion of breast CT data is performed using value-based tech-
niques in order to create the breast model. Algorithms were
implemented to reduce noise and correct for scatter in the
breast CT images as described below.

II.B.1. Noise reduction

A denoising algorithm developed by Xia et al.42,43 was
used in order to suppress noise in breast CT projection im-
ages prior to reconstruction without loss of spatial resolution.
In a breast CT projection image, the noise is larger toward
the chest wall, and when the dose is reduced, this phenom-
enon becomes more pronounced. The method of Xia et al.
removes noise with a spatially adaptive partial diffusion
equation technique that takes into account the nonuniform
distribution of noise in the projection images. The projection

images were processed with 40 iterations of the denoising
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algorithm of Xia et al. instead of the recommended 10 itera-
tions based on subjective evaluation of the effect of noise
suppression on subsequent segmentation. Tomographic im-
ages were reconstructed using a custom written Feldkamp
filtered backprojection algorithm42,43 and generated 255
768�768 images with an in-plane resolution of 250 �m
and slice thickness of 500 �m. The slice thickness was cho-
sen based on having sufficient data for phantom creation. To
demonstrate the noise reduction achieved with the denoising
algorithm, the projections were processed using different
numbers of denoising iterations �0,10,40� before reconstruc-
tion. Ten 100�100 regions of interest �ROIs� were chosen
across ten slices throughout the reconstructed image volumes
and the mean of the standard deviations of these ROIs was
measured.

II.B.2. Scatter correction

A postreconstruction scatter correction technique was
implemented to correct for background nonuniformity in
each axial image.44 The cupping artifact due to scatter radia-
tion is modeled as a circularly symmetric additive back-
ground signal profile in the reconstructed breast images. The
artifact lowers the true tissue signal in a nonuniform way
with a greater bias toward the breast center. The correction
signal is based on a sampling technique to obtain an estimate
of the adipose tissue signal in the axial images. The center of
each axial slice was defined and the minimum value of each
radius was used to generate an estimate of the adipose tissue
signal. Any inconsistencies or trends across the adipose tis-
sue signal were assumed to be from scatter and were mani-
fested in the axial image as a cupping artifact. A second
degree polynomial was fitted to each axial slice estimate for
the adipose tissue signal. The values for the polynomial func-
tion were averaged across all slices and used to simulate the
cupping artifact in each slice. The second degree polynomial
used for correction was 0.13x2−0.64x+9858. The simulated
cupping artifact was subtracted from the breast volume in
order to correct for scatter.

II.C. Tissue segmentation

After noise and scatter correction, the next step is the
automated classification of the CT data into the various
breast tissues that will define the appropriate physical char-
acteristics of each pixel during simulated compression and
image acquisition. Pixels were categorized as adipose, fibro-
glandular, or skin.

II.C.1. Breast masking

The first step in segmentation is to define a binary mask
for both the breast volume and the skin. The breast mask is
used to target the segmentation to the breast volume and not
the background. This mask also serves to classify the adipose
tissue by default, since the algorithm will assume that every-
thing within the breast volume that is not classified as fibro-
glandular tissue or skin will be classified as adipose tissue.

Several steps are used to define the mask including thresh-
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olding, filtering, and morphological operations. The breast
volume mask can be defined with a threshold between the
background and breast tissue. However, the threshold needs
to be tuned to each breast volume since the noise reduction
and scatter correction image processing steps may change the
values of the data.

The order of binary masking performed is not critical to
the overall performance of the phantom. In the experimental
method described, the skin mask was defined first since the
skin mask requires a nonmasked image to create and mask-
ing of the entire breast volume is done directly after the
breast mask definition.

II.C.1.a. Breast skin mask definition. To define a mask for
the skin, the local standard deviation of each axial slice was
determined using the MATLAB stdfilt function. The stdfilt
function requires a structuring element, which was defined as
a ball of height and radius of six pixels. The output of stdfilt
was normalized and thresholded using 0.1 as the cutoff. To
define a mask for the skin, the result was morphologically
dilated to ensure full skin coverage with the skin mask. The
dilation structuring element used was a disk of radius of six
pixels. The values used were determined by trial and error
for a single example breast.

II.C.1.b. Breast mask definition. The breast volume mask
can be defined with a threshold between the background and
breast tissue. However, the threshold needs to be tuned to
each breast volume since the different image processing
steps may change the values of the data. To define a mask for
the breast volume, all pixels that were less than 8000 in
value were set equal to zero. The remaining breast was mor-
phologically opened using a disk structuring element with a
radius of 20 pixels. This ensured that all pixels within the
breast volume would be maintained even if some were below
8000 in value. A threshold was found using the MATLAB

graythresh function and the mask for the breast was defined
with this value. The mask was applied to the breast such that
all values not defined with the mask were set to zero.

II.C.2. Iterative histogram classification

After the mask was applied to the breast data, all that
remained was the breast tissue. A histogram classifier was
used to differentiate between adipose and other types of tis-
sues due to differences in their pixel values. Based on a
method developed by Packard and Boone,45 an initial seg-
mentation of the breast tissues is done by iteratively evalu-
ating the histograms of each axial slice. The histogram for
each axial slice of the scatter corrected breast was found. The
left and right edges were used to define the center of the
histogram. The mean of the left and right sides of the histo-
gram were found and used as the left and right bounds to
redefine the center. This process was repeated until there was
little to no change in the center value between iterations. The
signal containing the center values of each slice was
smoothed with a seven-point moving average filter. A second
degree polynomial was fitted to the data and the first 60
values were replaced with the moving average filter output.

This maintained the larger values near the chest wall and
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minimized large swings in the signal. The smoothed signal
was used to define the threshold point for each slice such that
all values above the smoothed center value were classified as
fibroglandular and skin, and all values below were consid-
ered to be adipose tissue and are classified as zero. This
process left each axial slice of the segmented volume con-
taining an initial segmentation of only fibroglandular and
skin tissues.

II.C.3. Breast skin definition and removal

After the initial histogram segmentation, the skin mask
was applied. The histogram classifier does not differentiate
between skin and fibroglandular tissues; therefore the pre-
defined mask was used for skin definition. All nonadipose
tissue specified by the histogram classifier that lies within the
skin mask was classified as skin. The segmented skin was
saved and removed from the segmented breast and all fol-
lowing steps were performed only on the remaining classi-
fied fibroglandular tissue. In addition, single pixel islands
that were likely to be residual mis-segmented adipose tissue
were removed. All remaining steps were performed on fib-
roglandular tissue only.

II.C.4. Predefined morphological functions

A binary volume of the fibroglandular tissue was created,
and in each axial slice the MATLAB bwareaopen function was
used to remove any groups of pixels in the slice that con-
tained fewer than five pixels. Then a series of MATLAB bw-
morph operations was performed to fill in, or bridge, missing
pixel connections.

II.C.5. Ellipsoidal connection algorithm

There remained several small groups of less than 50 pix-
els that visually appeared to be disconnected from nearby
groups of pixels. The size was chosen based on the current
data set after visually inspecting islands that were known to
be connected based on the CT data and disregarding islands
that were too large. However, some islands were disjoined
sections that appeared as linear objects and appeared to be
connected to islands in the current slice and some were cir-
cular and appeared to continue through to the next slice.
Therefore, it was necessary to differentiate between circular
islands and linear islands. In order to define and link the
appropriate sections together, the ellipsoidal shape of the is-
lands was evaluated using the MATLAB regionprops-
eccentricity function. The island was classified as closer to a
line and possibly connected in the current plane if it had
greater than 85% eccentricity and close to a circle and con-
nected to the next plane if it was less. This differentiation
was made assuming that any fibers going between planes
would appear rounder than fibers staying within the plane. If
an island was found to have greater than 85% eccentricity
and an area of less than 50 pixels, then it was considered a
candidate for linking to another nearby island. If another
group of pixels was within 20 pixels away and along the
angular orientation of the candidate island, then the line con-

necting them was labeled as fibroglandular tissue. This was
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done by using MATLAB imclose function with a line structur-
ing element of length of 20 pixels at the designated angular
orientation.

II.C.6. Targeted region growing

After the previous step identified probable islands �small
and linear ellipses� that were supposed to be joined, there
were still certain areas that should be joined and were not
identified as small linear ellipses. The targeted region-
growing algorithm was used to join these regions. It defines
the distance between islands and searches for short ladder
patterns and then classifies the ladder as part of the fibroglan-
dular tissue. This step joined together separated islands that
were located close enough to indicate that they should be
connected. In order to address missing connections for re-
gions that were larger than 50 pixels and not linear in shape,
it was necessary to extend these regions under specific con-
ditions such that the original shape and size of each region
were essentially preserved by growing only under certain
conditions. It was assumed that regions that should be joined
would be relatively close together and there would be a spe-
cific short path between them. To find distances between re-
gions, the MATLAB bwdist function was used to define a dis-
tance map for each binary axial slice of classified
fibroglandular tissue. Ladderlike patterns in the distance map
were searched for at 10° angular increments from �85° to
85°, such as

�1 2 3 2 1 �, �
1

2

3

2

1
�, and �

1 0 0 0 0

0 2 0 0 0

0 0 3 0 0

0 0 0 2 0

0 0 0 0 1
� .

If the pattern was found, it was classified as fibroglandular
tissue. The maximum ladder distance was five pixels for the
axial slices.

II.C.7. Volumetric processing

Up to this point, all of the segmentation has been per-
formed only in axial planes. There may remain some discon-
tinuities between slices due to the two-dimensional �2D� pro-
cessing. In order to join the fibroglandular tissue
volumetrically and smooth away the discontinuities between
the axial slices, the MATLAB predefined morphological func-
tions, ellipsoidal connection algorithm, and targeted region
growing were performed on the coronal and sagittal slices.
The MATLAB bwmorph function was used on the classified
axial slices to fill in any small holes prior to processing in the
coronal and sagittal directions. The values used for the dif-
ferent functions during volumetric processing were that the
candidate region area for the ellipsoidal connection algo-
rithm was 30 with eccentricity of 0.85, and the maximum
ladder distance used for the targeted region-growing algo-

rithm was 3.
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II.C.8. Density differentiation

Although the breast is composed primarily of the three
segmented tissue types, there is often a compositional mar-
bling effect, where fibroglandular and adipose tissues are in-
terspersed in varying degrees. This marbling effect is visible
in the reconstructed data where some fibroglandular regions
appear less dense and have a pixel value between that of
adipose and fibroglandular tissues. The segmentation algo-
rithm takes into account the varying levels of adipose content
in the fibroglandular tissue by dividing the segmented fibro-
glandular tissue into three regions based on pixel value. The
algorithm results in the breast segmented into five compo-
nents: adipose, skin, and three varying levels of fibroglandu-
lar tissue.

After the volumetric processing step, the fibroglandular
tissue had been classified as well as the skin. All pixels lo-
cated within the predefined mask for the breast that were not
skin or fibroglandular tissue pixels were classified as adipose
tissue. The histogram of the fibroglandular tissue breast pix-
els was determined and divided into four segments. Because
the fibroglandular tissue density visually appeared to consist
primarily of less-dense tissue, the density differentiation was
skewed toward the lower half. The first two segments were
further classified as primarily adipose tissue with a low per-
centage �25%� of fibroglandular tissue. The third segment
was classified as 75% fibroglandular tissue and the fourth
segment was classified as 100% fibroglandular tissue. This
differentiation incorporated the marbling property of the dif-
ferent breast tissues. Three fibroglandular levels were chosen
because this provided a balance between simplicity and real-
ism for the resulting segmented data; fewer levels would not
provide a model with enough realism and higher levels were
unnecessary because it complicated the final model and did
not increase the realism of the final image.

II.D. Breast surface mesh-model creation

After the breast was segmented a polygon mesh model of
each classified tissue was created using the MATLAB isosur-
face function, which renders isosurfaces in volumetric data.
The isosurface function was used to generate initial polygon
mesh objects for the skin, fibroglandular, and adipose tissues.
Figure 2 shows an example surface rendering from this mesh
model of the segmented breast CT data. The polygon mesh
created for each structure using MATLAB serves as the initial
mesh of a subdivision surface. The mesh can be iteratively
subdivided and smoothed to create a smooth surface. Table I
summarizes the methods we used to create the breast

FIG. 2. Surface rendering of the skin is shown on the left and an illustration
of the inner structures is on the right.
phantom.



3127 Li et al.: Methodology for generating a 3D computerized breast phantom 3127
II.E. Simulated compression

To be applicable to many breast imaging modalities, the
breast phantom created above must be able to simulate dif-
ferent compression levels. Currently, we use a simple model
to simulate compression. The details of this algorithm have
been presented in detail previously, but in general, the breast
is compressed in one dimension �x� and extended in the other
dimensions �y and z� simulating compression between stiff
plates.46 The breast is assumed to be incompressible �fixed
volume� and isotropic. The mesh’s node locations were de-
termined to be inside or outside the compressed thickness of
the breast. Each x value of the vertices located outside is
multiplied by the compression ratio to give the new x values
for the compressed vertex location. Each x value of the ver-
tices originally located between the simulated compression
paddles remained unchanged. The method is demonstrated in
Fig. 3.

II.F. Simulated radiographic images

Once the phantom is defined, it can be combined with
existing simulation packages to simulate imaging data. To
demonstrate the application of the phantom, we simulate

TABLE I. Methodology to create breast phantom.

Noise reduction on raw projection images
↓

Image reconstruction with FBP
↓

Scatter correction
↓

Masking of breast volume and skin
↓

Iterative histogram classification
↓

Skin removal
↓

Ellipsoidal connection
↓

Targeted region growing
↓

Volumetric processing
↓

Adipose classification
↓

FGT differentiation
↓

Surface model generation
FIG. 3. Illustration of breast compression geometry.
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mammography and tomosynthesis data from the phantom as
described below. Both of these modalities require compres-
sion of the breast.

The vertices of the mesh-model were input into our sim-
plified compression algorithm in order to simulate the geom-
etry of the breast for simulated mammographic imaging. The
breast was compressed down to a thickness of 5 cm.

X-ray projection images were simulated directly from the
surface mesh model using a technique developed by Segars
et al.11 The geometry of the system was equivalent to that of
the Seimens Mammomat Novation System presented previ-
ously by the authors.46 Attenuation coefficients for adipose,
fibroglandular, and skin were derived from International
Commission on Radiation Units and Measurements �ICRU�
tissue data.47 The three different levels of fibroglandular tis-
sue were assigned attenuation coefficients between adipose
and muscle in order to account for their relative amount of
marbling. The most dense fibroglandular tissue was assigned
the elemental composition of muscle for our purposes since
fibroglandular tissue was not available in the database used.
A custom polyenergetic spectrum was used to simulate a
50 �m rhodium filter with a tungsten target.48 Images were
simulated with 1000�1000 pixels at 250 �m resolution.

After a simulated projection was acquired, a sigmoidal
correction function was applied in order to simulate a screen-
film mammogram, similar to what is currently applied to
digitally acquired mammograms. To validate the mammo-
gram simulation, the fractal dimension �FD� was calculated
for ROIs from the simulated mammogram and compared to
typical FD values obtained from real mammograms.49–51 Ten
different 150�150 ROIs located near the nipple were used
for the FD measurement. The FD was estimated using the
circular average power spectrum method52,53 that has been
used successfully in prior mammography applications.54 Ini-
tially, the two-dimensional power spectrum of the image was
obtained using zero padding and a radial Hamming window
to ensure better estimation of the power spectrum.55,56 The
2D power spectrum was then transformed into one dimen-
sion by linear averaging the spectrum as a function of the
radial distance from zero frequency. The Fourier power spec-
trum was plotted on a log-log scale as a function of the
frequency and linear regression was applied to estimate the
slope of the fitted line. The slope was then transformed into
a FD measure as described by Tourassi et al.54

III. RESULTS

III.A. Image processing

Figure 4 illustrates the denoising algorithm’s effect on the
original images. It clearly removes a significant amount of
noise and provides for clearer visualization of the fibroglan-
dular tissue in the denoised data. Table II shows that the
average standard deviation of ten 100�100 ROIs decreases
as the number of denoising iterations increases, which dem-
onstrates the noise reduction due to denoising. Figure 5 il-
lustrates the signal that was subtracted from each slice in
order to perform postreconstruction scatter correction to re-

move the cupping artifact.
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III.B. Tissue segmentation

Figure 6 shows the signal that contains the threshold dur-
ing iterative histogram classification for each axial slice.
Both the originally determined threshold level and the ap-
plied smoothed level values are shown.

Figure 7 is the binary data used during segmentation and
illustrates the effect of using predefined morphological op-
erations along with the ellipsoidal connection algorithm and
targeted region growing to classify the fibroglandular data.
Although subtle, there is improvement with the ellipsoidal
connection algorithm and targeted region growing. These
methods add noticeably to the high-resolution detail of re-
sulting images simulated with the phantom without perturb-
ing the overall shape and structure of the breast tissue.

Figure 8 illustrates the output of classification from the
volumetric processing step of the described algorithm. Per-
forming the segmentation steps volumetrically fills in holes
between neighboring slices and further improves the classi-
fication performance.

Figure 9 shows the final segmented slice. The density dif-
ferentiation is shown, which more closely represents the real
data than using a single value to describe the fibroglandular
tissue.

III.C. Simulated radiographic images

Figure 10 shows the characteristic curve that was used on
simulated projection images in order to simulate screen-film
mammogram appearance. Figure 11 shows a comparison of a
mammogram of a real human subject with two simulated
mammograms of the breast phantom. Figure 11�A� shows an
actual mammogram of a real human subject that is different
than the subject used for the phantom generation. Figure
11�B� shows a mammogram of the phantom using defined
attenuation coefficients ranging from adipose to muscle for
the differentiated fibroglandular tissue. Figure 11�C� shows a

TABLE II. Comparison of standard deviations for different levels of
denoising.

Original data Denoised data Denoised data

�0 iterations� �10 iterations� �40 iterations�
0.119�0.013 0.07�0.011 0.057�0.011

FIG. 4. �A� The original reconstructed CT data. �B� The data with ten de-
noising iterations, as optimal for image review. �C� The data with 40 de-
noising iterations to perform maximum noise reduction for segmentation
purposes only.
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FIG. 5. Signal matrix subtracted from each slice to correct for the cupping
artifact due to scatter.
FIG. 6. Signal of threshold points used for iterative histogram classification.
FIG. 7. �A� The initial binary slice after histogram classification. �B� The
slice after the ellipsoidal connection algorithm. �C� The slice after targeted
FIG. 8. �A� Result from iterative histogram classification. �B� Result from
axial processing. �C� Result from sagittal processing. �D� Result from coro-

nal processing.
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onstrate high-resolution detail of the phantom.
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mammogram of the phantom with artificially enhanced at-
tenuation coefficients to illustrate the high resolution detail.
The simulated mammograms subjectively demonstrate the
realism of the phantom and the level of detail in the tissue
structures appears similar to actual mammograms.

A quantitative validation of the breast phantom simula-
tions was performed using the fractal dimension calculated
from ROIs of the simulated mammograms �Figs. 11�B� and
11�C��. The average results from the simulation are shown in
Table III as compared to a study from Bakic et al. performed
on actual mammograms.49 The simulated results compare
quantitatively to published findings. They also compare simi-
larly to other studies by Caldwell et al.50 and Byng et al.51

that have found the FD to be within the range of 2.25–2.6.

IV. DISCUSSION

The goal of producing a suitable breast phantom for re-
search has been pursued by a number of investigators and
presents many challenges. Physical phantoms are not adjust-
able and do not realistically mimic the complexity of breast
anatomy. Computerized phantoms, on the other hand, have
traditionally offered either improved realism or flexibility but
often not at the same time. Computerized phantoms have
been available in two types: voxelized phantoms and math-
ematical phantoms based on geometric primitives. Voxelized
phantoms are based on real human data and are realistic;
however, they are not flexible and are also limited by the
parameters and environment used to acquire the images:
such phantoms may include arbitrarily fashioned mastec-
tomy specimens or low-resolution full body CT data. Math-
ematical phantoms allow for flexibility; however, the sim-
plistic shapes used as their basis do not generate visually
realistic images. The breast phantom created with this
method differs from other breast phantoms in that it com-
bines the realism of a voxelized phantom with the flexibility
of a mathematical phantom.

Initial images generated using this new methodology
demonstrate the realistic high-resolution detail available with
this phantom. However, several areas remain that require fur-
ther investigation. There are artifacts around the nipple re-
gion that may likely be due to the mesh creation or the image
acquisition algorithm. Further optimization may be required
for the final phantom to reduce the number of triangles in
order to simplify and smooth the surface model. The goal of
mesh optimization is to decrease the complexity while mini-
mally perturbing the overall shape and improving the fit to

TABLE III. Comparison of the FD distributions calculated from simulations
to published results observed from actual mammograms.

Fractal dimension
�the mean and standard deviation
are displayed�

Hamming
window

Published results
�Ref. 49�

Simulated mammogram �Fig. 11�B�� 2.23�0.007 2.36�0.10
Simulated mammogram �Fig. 11�C�� 2.18�0.016
FIG. 9. Final segmented slice showing five different tissue density classifi-
cations. From darkest to lightest: adipose, fibroglandular 1, fibroglandular 2,
FIG. 10. Characteristic curve used on simulated projection image in order to
FIG. 11. �A� An example of a real mammogram for comparison purposes of
a different subject than used to generate the computerized breast phantom.
�B� The mammogram with defined attenuation coefficients that are de-
scribed with three levels of fibroglandular tissue ranging from adipose to
muscle. �C� The mammogram with enhanced attenuation coefficient to dem-
the data. This optimized mesh will then become the input to



3130 Li et al.: Methodology for generating a 3D computerized breast phantom 3130
the subdivision surface algorithm that will generate the final
mesh to be incorporated into the XCAT phantom.

Certain high-resolution detail structures such as Cooper’s
ligaments are not fully visible because the segmentation was
not able to robustly classify these structures. Mathematically
defined fine resolution structures can be incorporated in the
future to artificially enhance the detail visible in the final
acquired image without significantly affecting the phantom’s
realism.

Although fast and efficient, the image simulation method
will be further improved to include models for noise, detec-
tor effects, and beam hardening. These steps will result in
more realistic noise levels and statistics. The current model
used a simplistic compression algorithm. This does not take
into consideration the different mechanical properties of the
different tissues. In the future, finite element methods will be
implemented to realistically simulate the deformation of
breast tissue under compression.

The similarity between the FD calculated from the simu-
lated mammograms compared to the FD of real mammo-
grams reported in the literature demonstrate the realism of
the breast phantom and that the simulation methods used are
capable of producing realistic imaging data. In addition, the
phantom has visually demonstrated that there is a realistic
level of detail that requires some additional tuning to further
improve its utility.

The described phantom includes information from only a
single patient. In the future, many additional models will be
created from different human subject data and the final phan-
toms methodology will incorporate information from all of
the models. We plan to incorporate adjustable size, density,
and tissue distribution in order to simulate a large number of
simulated subjects. Information from the multiple segmented
data sets will be synthesized to create a generic base breast
template that can be incorporated into the XCAT phantom.
The base breast template can be manipulated to model a
breast of any size or composition and deformed to simulate
compression, essentially creating a source for an infinite
number of simulated breasts to investigate existing and
emerging breast imaging modalities.

V. CONCLUSION

Current breast phantoms have many limitations. The
phantom presented in this work combines the flexibility of a
mathematical phantom with realistic anatomy based on ac-
tual human data. This new phantom may provide an impor-
tant tool for breast imaging researchers to optimize and im-
prove different imaging techniques and to evaluate and
compare various breast imaging modalities in terms of clini-
cal performance.
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With advances in 3D in vivo imaging technology, non-invasive procedures are being used to characterize 
tissues to identify tumors and monitor changes over time. Using a dedicated breast CT system with a 
quasi-monochromatic x-ray source and flat-panel digital detector, this study was performed in an effort to 
directly characterize different materials in vivo based on their attenuation coefficients. CT acquisitions 
were acquired using a rod phantom having different materials (delrin, polyethylene, acrylic, glandular-
equivalent, and fat-equivalent) and a human cadaver breast embedded with spherical acrylic lesions. 
Projections were collected with and without a beam stop array. For each projection, 2D scatter was 
estimated by cubic spline interpolating the average values behind the shadow of each beam stop inside the 
object. Scatter-corrected projections were then calculated by subtracting the scatter images containing 
only a mask of the object from corresponding projections without the beam stops. Iterative OSTR was 
used to reconstruct the data and estimate the non-uniform attenuation distribution. An additional post-
reconstruction flattening technique was applied to further reduce image non-uniformity. Preliminary 
results show that scatter correction reduces cupping artifact, improves image contrast, and yields 
attenuation coefficients closer to narrow-beam values. Peaks in the histogram showed clear separation 
among different material attenuation coefficients. Although post-reconstruction flattening did not improve 
contrast, its combination with the scatter correction further reduced the visual cupping artifact. These 
findings indicate that minimizing beam hardening with a quasi-monochromatic x-ray beam and applying 
scatter correction make it practical to directly characterize different tissues in vivo using absolute 
attenuation coefficients. 
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In vivo characterization of breast tissues through absolute attenuation coefficients using dedicated cone-beam CT 

Priti Madhav, Christina M. Li, Olav I. Christianson, Martin P. Tornai 

PURPOSE:  With advances in 3D in vivo imaging technology, non-invasive procedures are being used to characterize 
distinct tissues. Distinguishing different tissue compositions can be useful in identifying disease from normalcy, as well 
as observing changes over time with response to therapy. The Multi-Modality Imaging Lab at Duke University 
developed a dedicated breast CT system that uses a quasi-monochromatic x-ray source and a flat-panel digital x-ray 
detector to provide high quality volumetric data. In this study, scatter correction is implemented to obtain quantifiable 
reconstructed CT images. Minimizing beam hardening (due to the quasi-monochromatic x-ray source) and applying 
scatter correction can enhance image visualization and allow for direct in vivo characterization of different tissue types 
based on measured attenuation coefficients.  

METHODS: Experiments were conducted with the CT sub-system of the dual-modality dedicated breast SPECT-CT 
scanner.1 The CT component uses a rotating tungsten target x-ray source (model Rad-94, Varian Medical Systems, Salt 
Lake City, UT) with a 0.4/0.8mm nominal focal spot size and 14° anode angle and a 20×25cm2 FOV CsI(T1)-based 
amorphous silicon digital x-ray detector (model Paxscan 2520, Varian Medical Systems, Salt Lake City, UT) with a grid 
size of 1920 × 1536 pixels and 127μm pitch. A custom-built collimator is attached to the x-ray source to hold ultra-thick 
K-edge beam shaping filters to produce a quasi-monochromatic beam.2 For these studies, a 60kVp x-ray beam with a 
2.5mAs exposure per projection and a 0.051cm cerium filter (Z = 58, ρ = 6.77 g cm−3, K-edge = 40.4keV, Santoku 
America, Inc., Tolleson, AZ) were used. This filter yielded a spectrum that had a mean energy of approximately 36keV 
and the FWHM of 15%. The source-to-image distance (SID) is 60cm and source-to-object distance (SOD) is 38cm 
resulting in a magnification of 1.57 for an object located at the center of rotation of the system. This study is done using 
a rod phantom with different materials including delrin, polyethylene, acrylic, and glandular-equivalent and fat-
equivalent plastics (Computerized Imaging Reference Systems, Inc., Norfolk, VA) (FIG. 1 and TABLE 1), and a human 
cadaver breast embedded with acrylic spheres to mimic small, low contrast lesions. All projections were corrected for 
gain and offset and binned to 4x4 pixels. For each phantom, projections were collected with and without a beam stop 
array (BSA) (FIG. 2, LEFT and MIDDLE). The BSA was a 9.5x9.5x2cm acrylic plate that consisted of 108 2mm 
diameter lead balls spaced 5mm apart on a Cartesian grid. It was placed in front of the collimator (~15cm from the x-ray 
source). The algorithm to determine the scatter distribution using the BSA was based upon a technique found in the 
literature.3 A 2D scatter distribution for each projection was estimated by cubic spline interpolating the measured 
average values located behind the shadow of each beam stop inside the object (FIG.2, MIDDLE). The final scatter-
corrected projections were then calculated by subtracting the scatter images containing only a mask of the object (FIG.2, 
RIGHT) from the original corresponding projections without the beam stops. Reconstructions were done using a ray-
driven iterative ordered-subset transmission reconstruction algorithm (OSTR) which provided an estimate of the non-
uniform attenuation distribution of the object. Reconstruction parameters were set to 10 iterations, 16 subsets, 
350x350x384 reconstruction grid, and 508µm3 voxel size. A post-reconstruction flattening technique was additionally 
applied to the images to make them appear smoother in each coronal slice.4, 5 Data analysis was done by plotting line 
profiles and viewing image histograms for four different reconstruction sets: (1) no corrections (NC); (2) only scatter 
correction (SC); (3) only post-reconstruction flattening correction (PRF); and (4) scatter and post-reconstruction 
flattening correction (SC-PRF). Measured attenuation coefficients from the reconstructed images were compared with 
actual narrow-beam values calculated at the same energy.6  

RESULTS:  The dedicated CT system provides high quality volumetric images with clear depiction of differentiated 
breast tissues and internal structure (FIG. 3-4). A histogram of an uncorrected reconstructed CT slice acquired from a 
human subject volunteer is shown in Fig. 4. Use of the quasi-monochromatic x-ray source makes it possible to distinctly 
separate the breast tissue composition into fat, glandular, and (surgically confirmed) lesion. Fig. 5 shows that the 
measured scatter correction reduces the cupping artifact, improves image contrast, and yields attenuation coefficients 
closer to narrow-beam values. Peaks in the histogram showed distinct separation among different materials. Although the 
post-reconstruction flattening technique did not improve image contrast, its combination with the scatter correction 
method helped further reduce the cupping artifact, which does have an impact on image quality. The flattening technique 
also degraded the separation of the object components. 

NEW OR BREAKTHROUGH WORK: Along with the implementation of CT scatter correction in the iterative 
framework and the use of the quasi-monochromatic x-ray cone beam, this dedicated breast CT scanner makes it possible 
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FIGURE 1: (LEFT) Schematic of a rod phantom with different 
materials. Attenuation coefficients at 36keV for these different 
materials are listed in Table 1.  (RIGHT) 3D rendered design of 
the rod phantom that is currently in development. The rods will 
have a diameter of 20mm and length of 50mm. This phantom 
will be placed in a hollow cylinder such that CT acquisitions can 
be obtained in air or any fluid, e.g. water or oil. 

FIGURE 2: CT projection of a breast 
phantom filled with water acquired 
(LEFT) without and (MIDDLE) with 
the BSA. The BSA is composed of 108 
2mm diameter lead balls spaced 5mm 
apart. The red x-marks show the 
locations of the BSA that were used in 
the cubic spline interpolation to generate 
the 2D scatter image. (RIGHT) Final 
measured scatter projection mask image. 

Projection w/o BSA Projection w/ BSA Scatter Image Mask 

TABLE 1: Attenuation coefficient values 
(in cm-1) of different materials calculated 
using the table of x-ray mass attenuation 

coefficients6 at 36keV

Acrylic 0.3136 
Delrin 0.3490 

Fat 0.2541 
Glandular 0.2949 

Polyethylene 0.2285 
Water 0.3130 

for direct in vivo characterization of breast tissue by distinguishing and measuring absolute attenuation coefficients in the 
final reconstructed images. This can assist in identifying normal and diseased tissues and in monitoring changes that 
might occur over time with or without therapy.   

CONCLUSIONS: Preliminary results demonstrate that with the implementation of a quasi-monochromatic x-ray 
source, scatter correction and iterative reconstruction, CT reconstructed images can yield attenuation coefficients of 
different materials close to their actual narrow-beam values. This can lead to direct in vivo characterization of tissue 
without invasive procedures and allow better differentiation between materials with similar attenuation coefficients. 

PREVIOUS SUBMISSION OF THIS WORK: None 
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FIGURE 5: (LEFT TOP) Scatter-corrected only (SC) reconstructed CT coronal slice of a breast phantom shell filled 
with water and acrylic balls arranged in a cross pattern. A tight window was applied to the image such that the acrylic 
balls could be clearly seen in the water background. (LEFT BOTTOM) Line profile through the acrylic lesions 
(between the red arrows) for all four reconstruction sets: no corrections (NC); only scatter correction (SC); only post-
reconstruction flattening correction (PRF); and scatter and post-reconstruction flattening correction (SC-PRF). 
Profile shows that scatter correction reduces the cupping artifact, improves the contrast between acrylic and water, 
and yields attenuation coefficient values close to the narrow-beam values (see Table 1). The vertical dashed lines 
indicate the location of the center of each acrylic sphere. The post-reconstruction flattening correction helped to 
further reduce the cupping artifact. (RIGHT) Image histograms of all four reconstruction sets. With only scatter 
correction, the histogram shows two distinct peaks. Adding the post-reconstruction flattening correction degrades the 
histogram by showing a single peak close to 0.31cm-1.  
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FIGURE 4: (LEFT) Uncorrected reconstructed CT 
coronal slice of a 45-year post-menopausal woman with 
biopsy confirmed breast cancer. Surgically confirmed 
lesion is indicated within the red dotted circle. (RIGHT) 
Image histogram of this single slice shows a clear 
distinction among the attenuation coefficients for the 
different tissues. This differentiation is due to the quasi-
monochromatic x-ray source that the CT system uses.  
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FIGURE 3: (LEFT) Photograph of a cadaver 
breast from a 48-year old woman placed inside a 
breast phantom shell. (RIGHT) Uncorrected 
reconstructed CT coronal slice through the breast 
shows clear distinction between the fat and 
glandular tissue. 
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